ASUMSI KLASIK : UJI HETEROKEDASTIS

UJI HOMOKEDASTIS

Dalam regresi linier, kita mengenal beberapa asumsi klasik seperti

Bahasan kita kali ini adalah mengenai uji heterokodastisitas.

Asumsi homoskedasticity adalah pusat untuk model regresi linier. Homoskedasticity menggambarkan situasi di mana istilah kesalahan (yaitu, “error” atau gangguan acak dalam hubungan antara variabel independen dan variabel dependen) adalah sama di semua nilai dari variabel independen. Heteroskedasticity (pelanggaran homoskedasticity) hadir ketika ukuran jangka kesalahan berbeda antar nilai-nilai variabel independen.

Dampak dilanggarnya heterokedastis

Pelanggaran homoscedasticity membuat sulit untuk mengukur deviasi standar benar dari kesalahan perkiraan, biasanya menghasilkan interval keyakinan yang terlalu lebar atau terlalu sempit. Secara khusus, jika varians dari kesalahan meningkat dari waktu ke waktu, interval kepercayaan untuk out-of-sampel prediksi akan cenderung menjadi tidak realistis. (ref 1)

Adanya heterokodastisitas menyebabkan estimator (b) tidak lagi mempunyai varian yang minimum (terutama pada metode OLS). Sehingga estimator akan memiliki karakteristik sbb (ref 2) :

Estimator metode OLS masih linier

Estimator metode OLS masih tidak bias

Namun estimator metode OLS tidak lagi mempunyai varian yang minimum (no longer best)

Sehingga, konsekuensinya adalah :

Jika varian tidak minimum maka menyebabkan perhitungan standar error metode OLS tidak lagi dipercaya kebenarannya

Akibat standar error tidak dipercaya, maka parameter pada uji hipotesis (Uji F dan t) tidak lagi bisa dipercaya untuk mengevaluasi model regresi.

Cara mendeteksi:

Grafik

Cara yang paling mudah adalah dengan melihat grafik plot residual. Jika residual memiliki varian sama (homokedastis), maka grafik akan mempunyai pola yang pasti dari residual. Sebaliknya, jika residual memiliki pola heterokedastis, maka residual akan mempunyai pola tertentu.

Metode Park, Metode Glesjer, dan Metode Korelasi Rank Spearman akan dibahas pada bagian terpisah.

CONTOH KASUS

Kita punya data angket dari 35 pegawai. Kita akan melihat pengaruh masa kerja dan usia pegawai terhadap kinerja.

Datanya disini

PENYELESAIAN

Klik Analyze – Regression – Linier

Masukkan variabel Kinerja ke Box “dependent” dan “masa dan usia” ke box “independent”

Klik Plot, lalu masukkan “SRESID” ke axis Y, dan “ZPRED” ke axis “X”

Kilk Continue dan OK

HASIL REGRESINYA TIDAK AKAN DIBAHAS..

Memperhatikan Grafik Scatterplot terlihat bahwa titik-titik menyebar secara acak di atas maupun dibawah angka 0 pada sumbu Y. Hal ini mengindikasikan bahwa tidak terjadi heterokedastis, atau model dinyatakan terbebas dari masalah heterokedastis (homogeny)

Selanjutnya :

Uji Heterokedastis dengan Korelasi rank spearman

Uji Heterokedastis metode Park

Uji Heterokedastis metode Glesjer

Referensi :

Ref 1. disini

Ref 2. Agus Widarjono. 2008. Ekonometrika : Teori dan Aplikasi. Jakarta : Ekonisia

Lihat juga

About these ads

Posted on June 25, 2011, in ASUMSI KLASIK and tagged . Bookmark the permalink. 3 Comments.

  1. maaf mengganggu mau bertanya, data penelitian saya salah satu variabel independennya terkena heteroskedastisitas, datanya sudah saya log N tapi teteap saja variabel tersebut terkena hetero apa yang harus saya lakukan, mohon di jawab. terimakasih.

  2. mohon bantuan untuk mngatasi heteroskedastisitas dengan metode glejser donk pak.. saya bingung caranya pak. Mohon bantuannya pak

  3. asalamualaikum…

    pak mohon bantuannya
    saya mw tanya mengenai uji heterokodastisitas saya gunakan metode glejser hasilnya ada variabel saya yang kurang dari 0,05 itu berarti terjadi dampak heterokodastisitas ya pak??? apa yang harus saya lakukan pak untuk meneruskan skripsi saya ini????

    trima kasih sebelumnya

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: